o-CHLOROTOLUENE

PRODUCT IDENTIFICATION

CAS NO. 95-49-8

o-CHLOROTOLUENE

EINECS NO. 202-424-3
FORMULA CH3C6H4Cl
MOL WT. 126.59
H.S. CODE  

TOXICITY

 
SYNONYMS 2-Chloro-1-Methylbenzene; 2-Methylchlorobenzene; OCT;
1-Chloro-2-Methylbenzene; 1-Methyl-2-chlorobenzene; o-tolyl chloride; 2-Chlorotoluene; 2-Clorotolueno (Spanish); 2-Chlortoluol (German);

SMILES

 

CLASSIFICATION

 

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE clear liquid
MELTING POINT -35 C
BOILING POINT

158 - 159 C

SPECIFIC GRAVITY 1.082 - 1.083
SOLUBILITY IN WATER Slightly soluble

SOLVENT SOLUBILITY

Soluble in alcohol, chloroform, benzene, and ether
pH  
VAPOR DENSITY 4.38
AUTOIGNITION

> 450 C

NFPA RATINGS Health: 1 Flammability: 1 Reactivity: 0

REFRACTIVE INDEX

1.524 - 1.526
FLASH POINT 47 C
STABILITY Stable under ordinary conditions

DESCRIPTION AND APPLICATIONS

When substituted benzene molecules undergo electrophilic substitution reactions, substituents on a benzene ring can influence the reactivity. Activating substituents that activate the benzene ring toward electrophilic attack can alter the reaction rate or products by electronically or sterically affecting the interaction of the two reactants. deactivating substituents removes electron density from the benzene ring, making electrophilic aromatic substitution reactions slower and more difficult than benzene itself. For example, a hydroxy or methoxy substituent in phenol and anisole increases the rate of electrophilic substitution, while a nitro substituent decreases the ring's reactivity. Electron donating substituents activate the benzene ring toward electrophilic attack, and electron withdrawing substituents deactivate the ring, making it less reactive to electrophilic attack. The strongest activating substituents are the amino (-NH2) and hydroxyl (-OH) groups.

Reactivity Effects

Activating substituents

Deactivating substituents

Strong

-NH2, -NHR, -NR2, -OH, -O-

-NO2, -NR3+, -CF3, CCl3

Moderate

-NHCOCH3, -NHCOR, -OCH3,-OR

-CN, -SO3H, -COOH, -COOR, -COH, -COR

Weak

-CH3, -C2H5, -R, -C6H5

-F, -Cl, -Br, -I

Toluene, aniline and phenol are activated aromatic compounds. Examples of deactivated aromatic compounds are nitrobenzene, benzaldehyde and halogenated benzenes.

Activating substituents generally direct substitution to the ortho and para positions where substitutions must take place. With some exceptions, deactivating substituents direct to the meta position. Deactivating substituents which orient ortho and para- positions are the halogens (-F, -Cl, -Br, -I) and -CH2Cl, and -CH=CHNO2

When disubstituted benzene molecules undergo electrophilic substitution reactions, a new substituent is directed depends on the orientation of the existing substituents and their individual effects; whether the groups have cooperative or antagonistic directing effects. Ortho position is the most reactive towards electrophile due to the highest electron density ortho positions. But this increased reactivity is countervailed by steric hindrance between substituent and electrophile.

A nucleophilic substitution is a substitution reaction which the nucleophile displaces a good leaving group, such as a halide on an aromatic ring. This mechanism is called SNAr ( the two-step addition-elimination mechanism), where electron withdrawing substituents activate the ring towards nucleophilic attack. Addition-elimination reactions usually occur at sp2 or sp hybridized carbon atoms, in contrast to SN1 and SN2 at sp3. Chloro and bromobenzene reacts with the very strong base sodium amide (NaNH2) to give good yields of aniline. Other nucleophilic aromatic substitution mechanisms include benzyne mechanism and free radical (SRN1) mechanism.

Common reactions of substituent groups on benzene ring include:
  • Conversion of halogens into other various substituents
  • Modifying activating substituents
  • Oxidative degradation of alkyl chain
  • Reduction of nitro or carbonyl substituents
  • Reversibility of the aromatic sulfonation reaction

o-Chlorotoluene is used as a solvent and as an intermediate for organic synthesis especially for dyes.


SALES SPECIFICATION

APPEARANCE

clear liquid

PURITY

99.0% max

ISOMER

1.0% max

COLOR, APHA

15 max

WATER

0.3% max

TRANSPORTATION
PACKING 200kgs in drum
HAZARD CLASS 3 (Packing Group: III)
UN NO. 2238
OTHER INFORMATION
Hazard Symbols: XN N, Risk Phrases: 22-51/53, Safety Phrases: 24/25-61
GENERAL DESCRIPTION OF SOLVENT
Solvent is a substance, usually a liquid, that acts as a dissolving agent or that is capable of dissolving another substance. In solutions of solids or gases in a liquid, the liquid is the solvent. In all other homogeneous mixtures (i.e., liquids, solids, or gases dissolved in liquids; solids in solids; and gases in gases.), solvent is the component of the greatest amount. The minor proportion substances are called solutes. The solvent offers several functions during a chemical reaction. It solves the substance that reacts with another one to produce a new set of substances (reactant) and the compound that supplies the molecule, ion, or free radical which is considered as the attacking species in a chemical reaction (reagent). The solvent is conductive to collisions between the reactants and reagents to transform the reactants to new products. The solvent also takes roll of temperature control, either to provide the energy of the colliding particles for speedy reaction and to absorb heat in exothermic reaction. The appropriate solvent should be selected based on the inactivity in the reaction conditions, dissolving the reagents as well as reactants, appropriate boiling point and easy removal at the end of the reaction. he most common solvent is water. Other common solvents which dissolve substances that are insoluble (or nearly insoluble) in water are acetone, alcohol, formic acid, acetic acid, formamide. BTX, carbon disulfide, diemthyl sulfoxide, carbon tetrachloride, chloroform, ether, tetrahydrofuran, furfural, hexane and turpentine. They may be classified as polar and nonpolar types. They may be classified as polar and nonpolar types. Polar solvents, like water, have molecules whose electric charges are unequally distributed, leaving one end of each molecule more positive than the other. Usually polar solvent has O-H bond of which water (HOH), methanol (CH3OH) and acetic acid (CH3COOH) are examples. Propanol, butanol, formic acid, formamide are polar solvents. Dipolar solvents which contain a C-O solid bond without O-H bond are acetone [(CH3)2C=O], ethyl acetate (CH3COOCH2CH3), methyl ethyl ketone, acetonitrile, N,N-dimethylformamide and diemthyl sulfoxide. Nonpolar solvents, like carbon tetrachloride (CCl4), benzene (C6H6), and diethyl ether ( CH3CH2OCH2CH3), have molecules whose electric charges are equally distributed and are not miscible with water. Hexane, tetrahydrofuran and methylene chloride are nonpolar solvents.