а ZINC 2-MERCAPTOBENZOTHIAZOLE (ZMBT)

 

ZINC 2-MERCAPTOBENZOTHIAZOLE

PRODUCT IDENTIFICATION

CAS NO. 155-04-4

ZINC 2-MERCAPTOBENZOTHIAZOLE

EINECS NO.

 

FORMULA C14H8N2S4Zn
MOL WT. 397.86
H.S. CODE 2934.20
TOXICITY  
SYNONYMS

ZMBT; Bantex; Zinc Salt of 2-Mercaptobenzothiazole

Zetax; 2(3H)-Benzothiazolethione, zinc salt; Benzothiazolethiol, zinc salt; ZNMB; Zinc Bis(mercaptobenzothiazole); Benzothiazolethione, zinc salt; Zinc 2-mercaptobenzothiazolate; Zinc benzothiazolethiolate; Zinc benzothiazolylmercaptide; Zinc Bis(mercaptobenzothiazole); Zinc mercaptobenzothiazole;
RAW MATERIALS

 

CLASSIFICATION

RUBBER ACCELERATORS

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE

Off-white to pale yellow powder

MELTING POINT 300 C
BOILING POINT  
SPECIFIC GRAVITY

1.7

SOLUBILITY IN WATER Insoluble (Soluble in NaOH)
AUTOIGNITION  
pH  
VAPOR DENSITY  
NFPA RATINGS

Health: 1, Flammability: 1, Reactivity: 0

FLASH POINT

 

STABILITY

Stable under ordinary conditions

APPLICATIONS

It's main application is in sulfur cured latex as a secondary accelerator in combination with Zinc Diethyldithiocarbamate or Zinc Dimethyldithiocarbamate. Higher moduli in latex films are obtained than Dithiocarbamates  alone and a better compression set resistance in latex foam can be achieved without increasing the cure time. It is used also as an fast accelerator in dry rubber applications (almost similar to 2-Mercaptobenzothiazole, but with a slight scorch improvement).

SALES SPECIFICATION

APPEARANCE

Off-white to pale yellow powder

CONTENT

82 - 85%
ZINC CONTENT 15 - 18%

FREE MBT

14 - 18%

PARTICLE SIZE

0.1% max (+ 150 µm)

LOSS ON DRYING

0.5% max

OIL CONTENT

2.0% max

TRANSPORTATION
PACKING 20kgs in Bag
HAZARD CLASS  
UN NO.  

GENERAL DESCRIPTION OF ACCELERATOR
Sulfur combines with nearly all elements. Sulfur forms ring and chain structures as it is the second only to carbon in exhibiting catenation. The 8-membered ring and shorter chain structure of sulfur molecule is important in vulcanization process which individual polymers are linked to other polymer molecules by atomic bridges. This process produces thermoset materials which are cross-linked and irreversible substances. The term thermoplastic is for high molecular weight polymers which can undergo melting-freezing cycle. Thermosets are not melted and re-molded on heating after cured. The split of sulfur 8-membered ring structure into shorter chains provides rubber vulcanization process. The split are liked with cure sites (some of the solid bonds in the molecule) on rubber molecules, resulting in forming sulfur bridges typically between 2 and 10 atoms long. Vulcanization makes rubber harder, more durable and more resistant to heating, aging and chemical attacks. The number of sulfur atoms in the sulfur bridges varies physical properties of the end products. Short bridges containing one or two sulfur atoms offer heat resistance and long bridges offer flexible property. Vulcanization can also be accomplished with certain peroxides, gamma radiation, and several other organic compounds. The principal classes of peroxide cross-linking agents are dialkyl and diaralkyl peroxides, peroxyketals and peroxyesters. Other vulcanizing agents include amine compounds for the cross-linking of fluorocarbon rubbers, metal oxides for chlorine-containing rubbers (notably zinc oxide for chloroprene rubber) and phenol-formaldehyde resins for the production of heat-resistant butyl rubber vulcanizates. Accelerator, in the rubber industry, is added with a curing agent to speed the vulcanization. Accelerators contain sulfur and nitrogen like derivatives of benzothiazole and thiocarbanilides. The popular accelerators are sulfenamides (as a delayed-action accelerators), thiazoles, thiuram sulfides, dithocarbamates and guanidines.

There are some types of rubber accelerators. They are used in combination with each other in accordance with vulcanizing and/or acid-base conditions. Some examples classified by chemical structure are as below;

  • Thiazole
    • 2-Mercaptobenzothiazole (CAS #: 149-30-4)
    • Dibenzothiazole disulfide (CAS #: 120-78-5)
    • 2-Mercaptobenzothiazole Zinc salt (CAS #: 155-04-4)
  • Sulphenamide
    • N-Cyclohexyl-2-benzothiazole sulfenamide (CAS #: 95-33-0)
    • N-Oxydienthylene-2-benzothiazole sulfenamide (CAS #: 102-77-2)
    • N-tert-butyl-2-benzothiazyl sulfenamide (CAS #: 95-31-8)
  • Guanidine
    • Diphenyl guanidine (CAS #: 102-06-7)
    • Di-o-tolylguanidine (CAS #: 97-39-2)
  • Thiuram
    • Tetramethyl thiuram disulfide (CAS #: 137-26-8)
    • Tetraethyl thiuram disulfide (CAS #: 97-77-8)
    • Tetramethyl thiuram monosulfide (CAS #: 97-74-5)
    • Isobutyl thiuram disulfide (CAS #: 3064-73-1)
    • Tetrabenzylthiuram disulfide (CAS #: 10591-85-2)
    • Dipentamethylene thiuramtetrasulfide (CAS #: 120-54-7)
  • Dithiocarbamate
    • Zinc dimethyl dithiocarbamate (CAS #: 137-30-4)
    • Zinc diethyl dithiocarbamate (CAS #: 14324-55-1)
    • Zinc dibutyl dithiocarbamate (CAS #: 136-23-2)
    • Zinc N-ethyl-dithiocarbamate (CAS #: 14634-93-6)
    • Zinc dibenzyl dithiocarbamate (CAS #: 14726-36-4)
    • Copper dimethyl dithiocarbamate (CAS #: 137-29-1)
  • Thiourea
    • Ethylene thiourea (CAS #: 96-45-7)
    • N,N'-Diethylthiourea (CAS #: 105-55-5)
    • N-N'-Diphenylthiourea (CAS #: 102-08-9)